Advancing CNS tumor diagnostics with expanded DNA methylation-based classification
Menée à partir d'échantillons tumoraux issus de patients atteints d'un cancer du système nerveux central, cette étude évalue la performance d'un classificateur basé sur des profils de méthylation de l'ADN pour diagnostiquer avec précision des sous-classes tumorales
DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Heidelberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495 methylation profiles, which expands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of newly identified tumor types discovered through our large online repository and global collaborations, underscoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy, with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification. Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels, thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8 surpasses previous versions and conventional WHO-based approaches. These advances highlight the improved precision and practical utility of the updated classifier in personalized neuro-oncology.
Cancer Cell , article en libre accès, 2025