Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer
Menée à l'aide notamment de modèles murins de fibrose pulmonaire ou de cancer pancréatique métastatique, cette étude met en évidence un mécanisme par lequel la durotaxie, phénomène de migration cellulaire guidée par des gradients de rigidité, favorise la dissémination des cellules cancéreuses
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer. In lung fibrosis, durotaxis directs fibroblast recruitment to sites of injury, where they undergo mechano-activation into scar-forming myofibroblasts. In pancreatic cancer, stiffening of the tumour microenvironment induces durotaxis of cancer cells, promoting metastatic dissemination. Mechanistically, durotaxis is mediated by focal adhesion kinase (FAK)–paxillin interaction, a mechanosensory module that links stiffness cues to transcriptional programmes via YAP signalling. To probe this genetically, we generated a FAK-FATL994E knock-in mouse, which disrupts FAK–paxillin binding, blocks durotaxis and attenuates disease severity. Pharmacological inhibition of FAK–paxillin interaction with the small molecule JP-153 mimics these effects. Our findings establish durotaxis as a disease mechanism in vivo and support anti-durotactic therapy as a potential strategy for treating fibrosis and cancer.
Nature Cell Biology , article en libre accès, 2025