Long-range cholinergic input promotes glioblastoma progression
Menée à l'aide de xénogreffes de glioblastome sur des modèles murins, cette étude met en évidence un mécanisme par lequel la libération présynaptique d'acétylcholine favorise la progression tumorale par l'intermédiaire du récepteur muscarinique CHRM3
Glioblastoma (GBM), the most aggressive primary brain tumor, is shaped by its integration into neural networks. While glutamatergic input is linked to tumor progression, the broader architecture and function of neuron-glioma connectomes remain unclear. Using monosynaptic rabies tracing, we map brain-wide neural input to patient-derived xenografts and reveal a consistent organizational logic: local inputs are primarily glutamatergic, while long-range connections exhibit diverse neurotransmitter profiles, with basal forebrain cholinergic projections emerging as a conserved input across sites. Functionally, presynaptic acetylcholine release promotes GBM progression through muscarinic receptor CHRM3 in a circuit-specific manner. Mechanistically, glutamatergic and cholinergic signals converge to enhance glioma calcium transients but diverge in temporal transcriptional control, with their dual blockade producing additive anti-tumor effects. Therapeutically, the anticholinergic drug scopolamine attenuates glioma growth, whereas the acetylcholinesterase inhibitor donepezil exacerbates disease. These findings reveal the complexity of neuron-glioma connectivity, highlighting long-range neuromodulatory pathways as promising therapeutic targets in GBM.
Cancer Cell , résumé, 2025