Neuronal activity-dependent mechanisms of small cell lung cancer pathogenesis
Menée à l'aide de modèles murins ainsi que d'échantillons de tumeurs primitives et de métastases cérébrales issues de patients atteints d'un cancer du poumon à petites cellules, cette étude analyse le rôle du nerf vague dans la progression de la maladie et met en évidence un mécanisme par lequel l'activité neuronale corticale glutamatergique et GABAergique
Neural activity is increasingly recognized as a crucial regulator of cancer growth. In the brain, neuronal activity robustly influences glioma growth through paracrine mechanisms1 and by electrochemical integration of malignant cells into neural circuitry via neuron-to-glioma synapses2,3. Outside of the central nervous system, innervation of tumours such as prostate, head and neck, breast, pancreatic, and gastrointestinal cancers by peripheral nerves similarly regulates cancer progression4–12. However, the extent to which the nervous system regulates small cell lung cancer (SCLC) progression, either in the lung or when growing within the brain, is less well understood. SCLC is a lethal high-grade neuroendocrine tumour that exhibits a strong propensity to metastasize to the brain. Here we demonstrate that in the lung, vagus nerve transection markedly inhibits primary lung tumour development and progression, highlighting a critical role for innervation in SCLC growth. In the brain, SCLC cells co-opt neuronal activity-regulated mechanisms to stimulate growth and progression. Glutamatergic and GABAergic (γ-aminobutyric acid-producing) cortical neuronal activity each drive proliferation of SCLC in the brain through paracrine and synaptic neuron–cancer interactions. SCLC cells form bona fide neuron-to-SCLC synapses and exhibit depolarizing currents with consequent calcium transients in response to neuronal activity; such SCLC cell membrane depolarization is sufficient to promote the growth of intracranial tumours. Together, these findings illustrate that neuronal activity has a crucial role in dictating SCLC pathogenesis.
Nature , article en libre accès, 2025