• Biologie

  • Progression et métastases

  • Sein

ADSL-generated fumarate binds and inhibits STING to promote tumour immune evasion

Menée à l'aide de lignées cellulaires, de modèles murins et d'échantillons de tumeurs mammaires triple négatives, cette étude met en évidence un mécanisme par lequel le fumarate, généré par l'adénylosuccinate lyase, favorise l'échappement immunitaire en inhibant l'activation de STING

Highly aggressive tumours have evolved to restrain the cGAS–STING pathway for immune evasion, and the mechanisms underlying this hijacking remain unknown. Here we demonstrate that hypoxia induces robust STING activation in normal mammary epithelial cells but not in breast cancer cells. Mechanistically, adenylosuccinate lyase (ADSL), a key metabolic enzyme in de novo purine synthesis, is highly expressed in breast cancer tissues and is phosphorylated at T350 by hypoxia-activated IKKβ. Phosphorylated ADSL interacts with STING at the endoplasmic reticulum, where ADSL-produced fumarate binds to STING, leading to the inhibition of cGAMP binding to STING, STING activation and subsequent IRF3-dependent cytokine gene expression. Disrupting the ADSL–STING association promotes STING activation and blunts tumour growth. Notably, a combination treatment with ADSL endoplasmic reticulum translocation-blocking peptide and anti-PD-1 antibody induces an additive inhibitory effect on tumour growth accompanying a substantially increased immune response. Notably, ADSL T350 phosphorylation levels are inversely correlated with levels of STING activation and predicate poor prognosis in patients with breast cancer. These findings highlight a pivotal role of the metabolite fumarate in inhibiting STING activation and uncover new strategies to improve immune-checkpoint therapy by targeting ADSL-moonlighting function-mediated STING inhibition.

Nature Cell Biology , résumé, 2025

Voir le bulletin