• Dépistage, diagnostic, pronostic

  • Ressources et infrastructures

  • Sein

A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition

Cet article présente le développement d'un modèle QSP (Quantitative systems pharmacology) pour étudier la réponse au pembrolizumab chez les patientes atteintes d'un cancer du sein triple négatif métastatique et met en évidence l'intérêt de ce modèle pour identifier des biomarqueurs associés à l'inhibition de PD-1

Triple-negative breast cancer (TNBC), a highly metastatic breast cancer subtype, has limited treatment options. While a small number of patients attain clinical benefit with single-agent checkpoint inhibitors, identifying these patients before the therapy remains challenging. Here, we developed a transcriptome-informed quantitative systems pharmacology model of metastatic TNBC by integrating heterogenous metastatic tumors. In silico clinical trial with an anti–PD-1 drug, pembrolizumab, predicted that several features, such as the density of antigen-presenting cells, the fraction of cytotoxic T cells in lymph nodes, and the richness of cancer clones in tumors, could serve individually as biomarkers but had a higher predictive power as combinations of two biomarkers. We showed that PD-1 inhibition neither consistently enhanced all antitumorigenic factors nor suppressed all protumorigenic factors but ultimately reduced the tumor carrying capacity. Collectively, our predictions suggest several candidate biomarkers that might effectively predict the response to pembrolizumab monotherapy and potential therapeutic targets to develop treatment strategies for metastatic TNBC. In-silico clinical trial facilitates selection of patients for immunotherapy targeting PD-1 in metastatic breast cancer.

Science Advances , article en libre accès, 2022

Voir le bulletin