• Dépistage, diagnostic, pronostic

  • Évaluation des technologies et des biomarqueurs

  • Mélanome

Detection of BRAF p.V600E Mutations in Melanomas: Comparison of Four Methods Argues for Sequential Use of Immunohistochemistry and Pyrosequencing

Menée sur 111 patients atteints d'un mélanome métastatique, cette étude compare les performances de quatre méthodes d'identification de la mutation V600 du gène BRAF dans les échantillons tumoraux

BRAF p.V600 mutation detection recently became necessary to treat metastatic melanoma patients with vemurafenib. This study compares different methods of detection of BRAF mutations. Melanoma samples from 111 patients were analyzed for BRAF mutations, and for 89 of them, results were obtained with the four following methods: Sanger sequencing, real-time PCR, immunohistochemistry, and pyrosequencing. All samples contained at least 60% of tumor cells. Directional Sanger sequencing of PCR products failed to detect 3 of 40 p.V600E-mutated cases (7.5%) (sensitivity, 92.5%; 95% CI, 78.5% to 98.0%). BRAF p.V600E-specific real-time PCR identified 39 of 40 p.V600E-mutated cases (97.6%) (sensitivity, 97.5%; 95% CI, 87.1% to 99.6%) and all 39 wild-type (WT) cases and surprisingly was also positive for 6/6 p.V600K (specificity, 87.8%; 95% CI, 75.8% to 94.3%). However, other mutations, p.V600R (n = 1), p.K601E (n = 2), and p.600_601delinsE (n = 1), were not detected. Immunohistochemistry with VE1, specific for p.V600E, identified all p.V600E and WT cases (sensitivity, 100%; 95% CI, 91.2% to 100%) but was negative for all other BRAF mutations. Pyrosequencing successfully identified all WT and mutated cases. Immunohistochemistry is highly specific for p.V600E, could be used as a first-line method, and is currently performed for HER2 amplification detection. Pyrosequencing proved to be the most efficient method to detect BRAF mutations in melanomas and could be performed on VE1-negative or uninterpretable cases.

The Journal of molecular diagnostics : JMD , résumé, 2011

Voir le bulletin